Lyme Antibiotics: Doxycycline and Amoxycillin are NOT the most active drugs against Borrelia burgdorferi!


Free accurate pathology testing for Lyme/MSIDS:

“Free testing of 320 infections!”

Traditional pathology testing for Lyme/MSIDS has an accuracy of less than 70% with many false positives and negatives.

Hope Australia offers free bio-resonance testing with greater accuracy.
Request a kit from subject ‘Free test’

Lyme Antibiotics:

Emerg Microbes Infect. 2014 Jul;3(7):e49. doi: 10.1038/emi.2014.53. Epub 2014 Jul 2.

Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library.


Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.


Borrelia burgdorferi; FDA approved drug library; SYBR Green I; drug discovery; persisters


Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central

Related information

Front Microbiol. 2017 Apr 11;8:596. doi: 10.3389/fmicb.2017.00596. eCollection 2017.

Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study.


To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.


Borrelia burgdorferi; Lyme disease; cryo-fluorescence; cryo-scanning electron microscopy; pleomorphism; round body; viability staining